A Theorem of Hochster and Huneke concerning Tight Closure and Hilbert-kunz Multiplicity

نویسنده

  • LORI MCDONNELL
چکیده

We provide a (mostly) self-contained treatment of Hochster and Huneke’s theorem characterizing Hilbert-Kunz multiplicity in terms of tight closure. This is not a new proof, just an elaboration of the one given in [3].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hilbert-kunz Criterion for Solid Closure in Dimension Two (characteristic Zero)

Let I denote a homogeneous R+-primary ideal in a twodimensional normal standard-graded domain over an algebraically closed field of characteristic zero. We show that a homogeneous element f belongs to the solid closure I∗ if and only if eHK(I) = eHK((I, f)), where eHK denotes the (characteristic zero) Hilbert-Kunz multiplicity of an ideal. This provides a version in characteristic zero of the w...

متن کامل

Forcing Algebras, Syzygy Bundles, and Tight Closure

We give a survey about some recent work on tight closure and Hilbert-Kunz theory from the viewpoint of vector bundles. This work is based in understanding tight closure in terms of forcing algebras and the cohomological dimension of torsors of syzygy bundles. These geometric methods allowed to answer some fundamental questions of tight closure, in particular the equality between tight closure a...

متن کامل

Unmixed Local Rings with Minimal Hilbert-kunz Multiplicity Are Regular

We give a new and simple proof that unmixed local rings having Hilbert-Kunz multiplicity equal to 1 must be regular.

متن کامل

Absolute Integral Closure in Positive Characteristic

Let R be a local Noetherian domain of positive characteristic. A theorem of Hochster and Huneke (1992) states that if R is excellent, then the absolute integral closure of R is a big Cohen-Macaulay algebra. We prove that if R is the homomorphic image of a Gorenstein local ring, then all the local cohomology (below the dimension) of such a ring maps to zero in a finite extension of the ring. The...

متن کامل

Generalized Test Ideals and Symbolic Powers

In [HH7], developing arguments in [HH5], Hochster and Huneke used classical tight closure techniques to prove a fine behavior of symbolic powers of ideals in regular rings. In this paper, we use generalized test ideals, which are a characteristic p analogue of multiplier ideals, to give a generalization of Hochster-Huneke's results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009